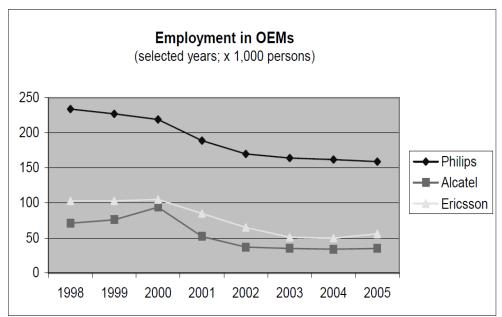
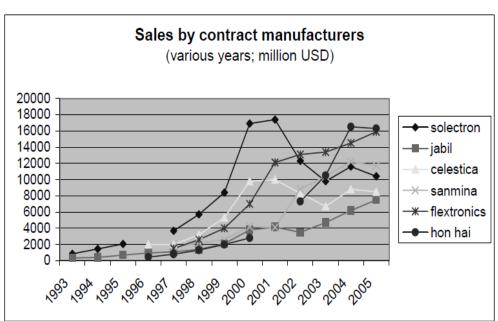

COMPETITIVE ELECTRONICS ASSEMBLY NEARBY

GEERT WILLEMS – IMEC-ELECTRONIC ASSEMBLY
CENTER FOR ELECTRONICS DESIGN AND MANUFACTURING


OUTLINE


- 20th Century Manufacturing Outsourcing
- Outlook 2015
- Re-shoring: bring manufacturing back
- O What is needed?
- Quantification of Product Life Cycle Risks
- cEDM Tool Box

THE 20TH CENTURY MANUFACTURING OUTSOURCING

THETREND

- Focus on the core business
- Low cost electronics manufacturing by EMS:

 $US \rightarrow Mexico$ West → East Europe

THE 20TH CENTURY MANUFACTURING OUTSOURCING

20 YEARS OF ELECTRONICS OUTSOURCING

The result

- Electronics is everywhere
- China: The world's factory
- US-Europe: major decline in manufacturing activity and know-how ...
 ... that is needed for cost effective, qualitative product development
- Highly complex and fragmented supply chain
- Declining quality and reliability
- Counterfeit: >10% of electronic components
- \circ Copyright \rightarrow "The right to copy"
- Slow response speed to customer driven changes.
- A lot of hidden costs: non-quality, communication, engineering changes, design iterations,...
- Transport: cost, environment

OUTLOOK 2015 - INDUSTRY

"THE TIMES THEY ARE A-CHANGIN"?

Foxconn Is Coming to America: Has Offshoring Peaked?

Bolaji Ojo | January 28, 2014 | 1 Comment

Manufacturing Comes Back to United States Terry Costlow, IPC online editor September 2, 2013

HOW RESHORING DRIVES PROFITABILITY

This paper was originally published in the IPC APEX EXPO 2015 technical conference program.

Domestic Versus Offshore PCB Manufacturing

The Trend Away From Offshore PCB Manufacturing

Is Nearshoring Right for Your Product?

JULY 2012

As China matures, a host of factors could rebalance the geographical supply chain.

Must manufacturing leave Europe?

Electronic Engineering Times Europe November 2013

"Raspberry Pi has shown that with the right product addressing a global market European manufacturing not only makes sense, but can show a lead to the world."

Is Reshoring A Viable Option?

Tue, 01/21/2014 - 9:58am

by Tia Nowack, Associate Editor, Industrial Maintenance & Plant Operation

More: http://reshoringmfg.com/

A NEW PARADIGM FOR DESIGN THROUGH MANUFACTURE

Presented at IPC Apex 2012

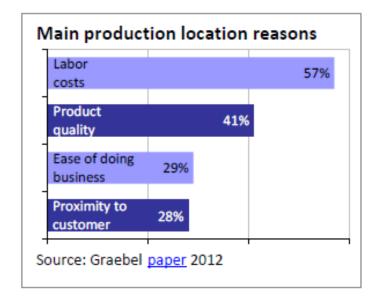
Why Printed Circuit Board Design **Matters to the Executive:**

How PCBs Are a Strategic Asset for Cost Reduction and Faster Time-to-Market

February 2010

OUTLOOK 2015 - GOVERNEMENT

"THE TIMES THEY ARE A-CHANGIN"?

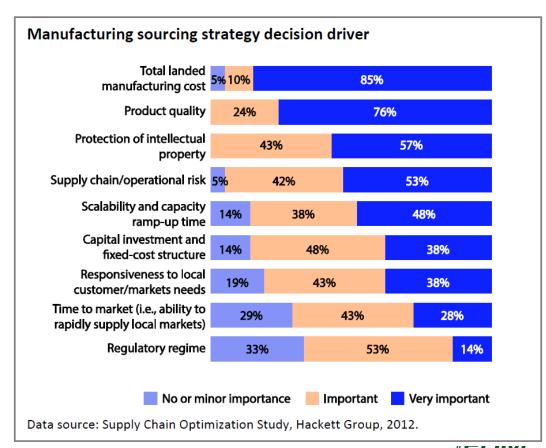


DRIVERS FOR RE-SHORING

Industry

- Rising total landed cost
 - Increasing labour costChina: +10%/y ('00-'05) +19%/y ('06-'10)
 - Increasing transport costs: oil x3 since '00
 - Cost of (larger) inventory
- Product quality
- Intellectual Property
- Ease of doing business
- Proximity to customers
- Mitigate supply risk

Governements


- Jobs: I manufacturing job + 2.5 support
- Higher pay than service sector
- \circ More R&D \rightarrow innovation, IP
- More export, less import

MOST LIKELY PRODUCTS TO BE RE-SHORED

- Expensive to transport: ex. Heavy machinery
- "Dynamic" goods subject to frequent changes in consumer demand and short product life-cycles
- Products where safety concerns are important

Not everything will come back!

WHAT IS NEEDED?

Product:

- Dynamical
- High value
- Quality
- \circ Safety \rightarrow reliable

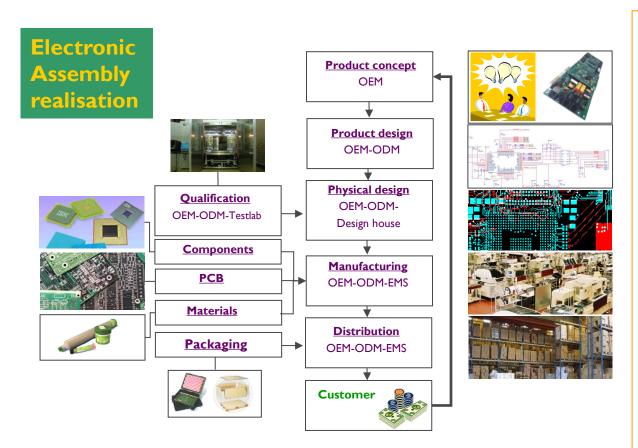
Trustworthy PREDICTION of all Product Life Cycle aspects

(without costly, long duration prototyping & testing)

Design-for-eXcellence

Manufacturing, Reliability, Logistics, Cost,...

Challenge:

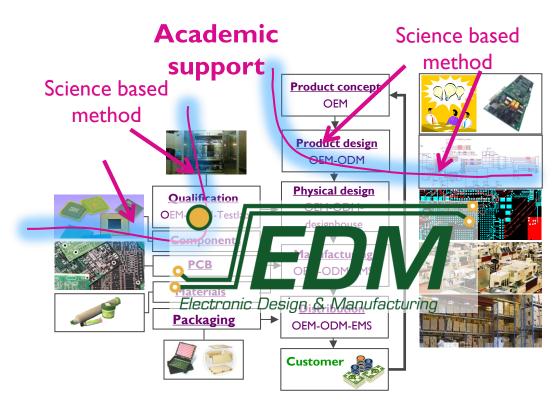

In the US – and in parts of Europe – there is difficulty in finding suitably skilled labour, reflecting the education system and a loss of specific manufacturing know-how, which has passed to new countries.

WHAT IS NEEDED? PRODUCT LIFE CYCLE & SUPPLY CHAIN

Status

- Many players.
- International.
- Very complex.
- Fragmented responsibility.
- Little academic support and education (esp. at master level)

Consequence


- Poor electronic product specification.
- Poor control of product and supply chain quality and performance.
- Development of design guidelines has stopped.

WHAT IS NEEDED? SCIENTIFIC/ACADEMIC SUPPORT

Experience-based industrial approach

Insufficient scientific basis and possibilities for education:

- PCB/PBA technology
- Substrate manufacturing
- Electronics assembly
- Test coverage
- Failure-mechanisms
- Design-for-X
- Reliability tests
- etc.

to handle challenges of complexity, quality and reliability

WHAT IS NEEDED

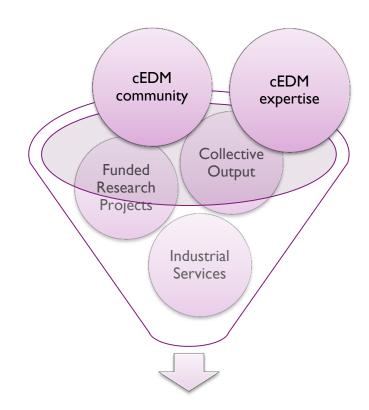
- From experience to science based product development and manufacturing
- IC realisation as a source of inspiration:
 Each realisation element of an IC has a EA 'sibling'.

IC realisation

- Materials semiconductors, metals, insulators, interfaces
- Process-steps oxidation, implantation, deposition, lithography,...
- Production-flow
 IC process flow
- Test and analysis
- Design layout TAD
- Reliability

EA realisation

- Materials polymers, metals, solder, interfaces
- Process-steps lamination, drilling, plating, lithography, printing, assembly, soldering,...
- Production-flow substrate b , assembly flow
- Test and are
- Design lay
 ufacturing
- Reliability


CEDM MISSION

To support industry

in the development and manufacturing of high quality, reliable and cost-effective electronic modules (PBA)

by means of

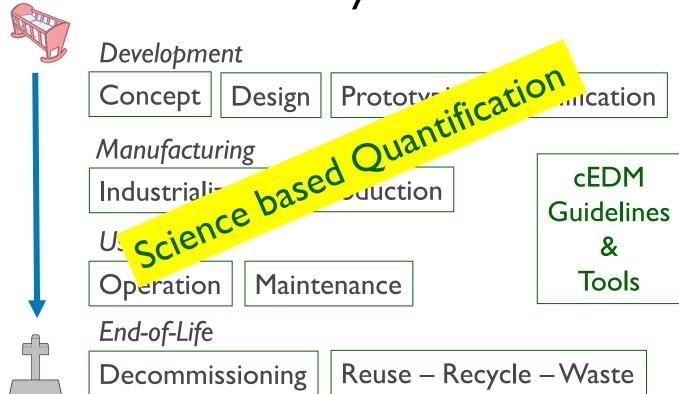
knowledge creation and sharing,
scientifically sound methodologies,
collaboration throughout the
electronic supply chain.

Better electronics at reduced cost through science based design & production methodologies

www.cedm.be

THE CEDM COMMUNITY

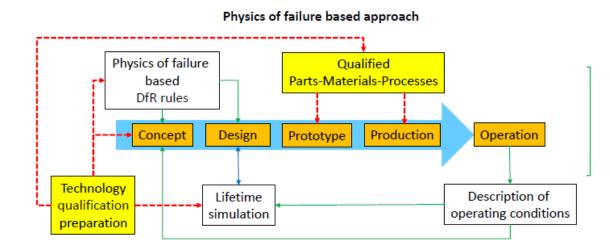
Supply Chain



Product Life Cycle of electronics

Development: critical aspects

- Engineering cost
- Time-to-market


Minimize:

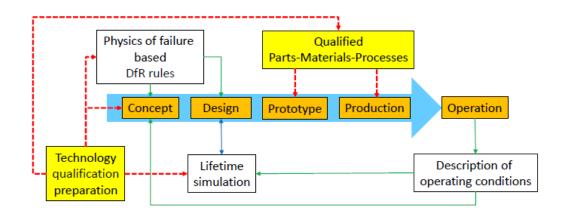
- Redesign
- Prototyping iterations: right first time
- Qualification failures

Maximize: PREDICTABILITY

Design-for-X guidelines & tools:

Manufacturing, test, reliability/robustness, logistics

Manufacturing: critical aspects


- Cost
- Volume ramp-up
- Delivery performance

Maximize yield

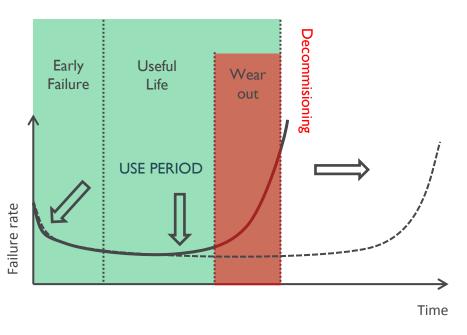
Minimize labour

Minimize Work-in-Progress (test & repair)

Design-for-Manufacturing, Test, Cost, Logistics,...

17

www.cedm.be



Use: critical aspects

- Quality
- Reliability
- Performance
- **Availability**
- Low maintenance cost

Design-for-Quality and Reliability

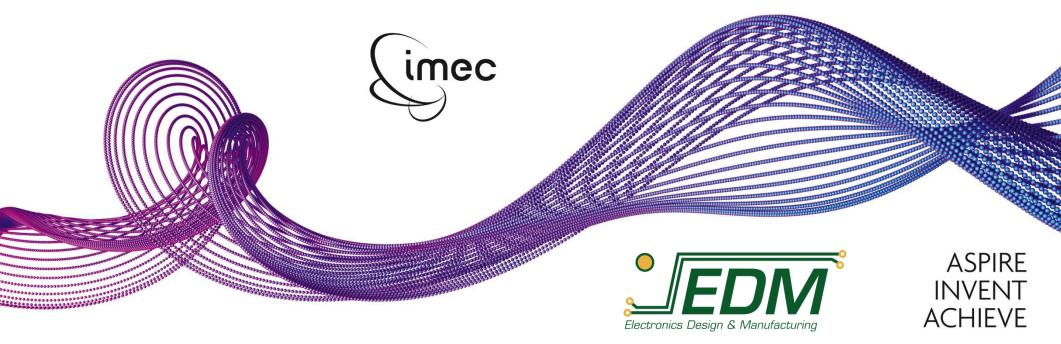
Quality and Reliability quantification

18

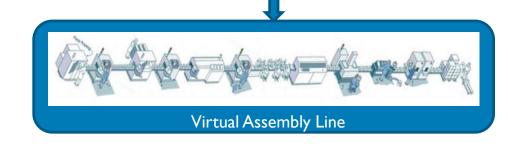
End-of-Life: critical aspects

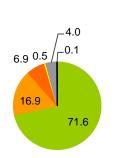
- Replacement
- RoHS/WEEE
- Toxicity

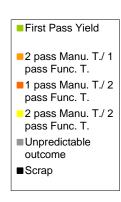
identification

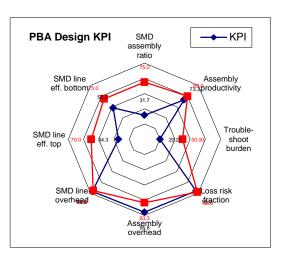

- Waste treatment cost
- Recycling revenue

Design-for-RoHS/WEEE, disassembly, recycling BOM based material



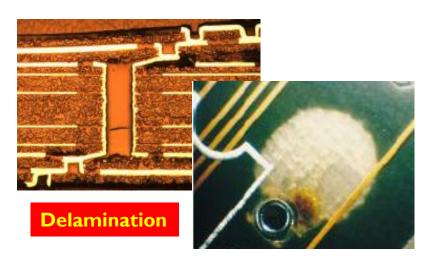

- Bill of Materials
 - **Product Input**
 - Process Parameters

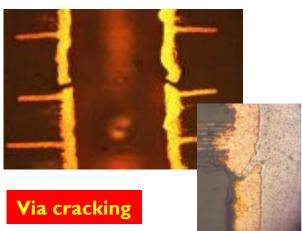


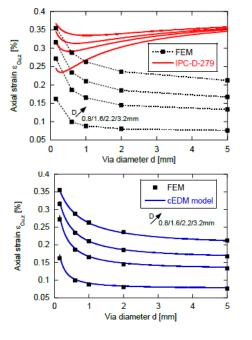

- Quantified Quality
 - DPMO/yield
 - Test coverage
 - Assembly flow & time
- Assembly model and DfA evaluator
 - Design impact on assembly flow and efficiency

PBA flow distribution

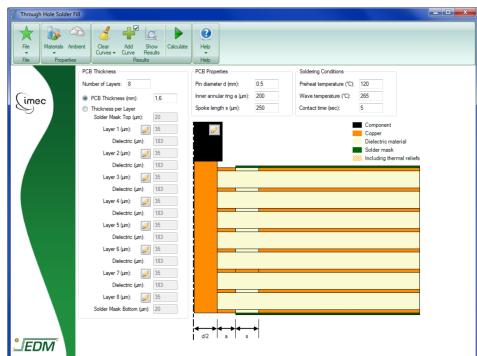
www.cedm.be






PCB laminate specification: specify FR4 type

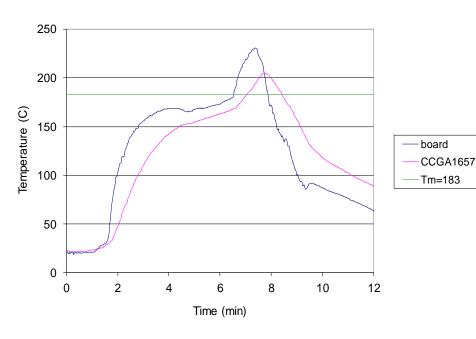
- (Cohesive) delamination
- Via failure: new analytical model
- Prediction of failure probability: production & operation
- >200 laminates: PCB Laminate Overview on www.cedm.be



Assembly: wave soldering

NEW:

% through hole fill




Assembly:

reflow soldering

Soon:

BOM based prediction reflow soldering temperature differences across the PBA

PCB layout:

DfA & thermal design

NEW:

Thermal via for bottom terminated SMD

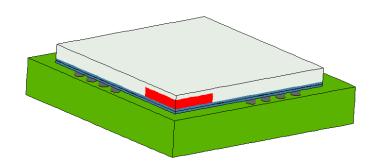
Under development

Reliability extension to **Pred-**X

Analytical solder joint lifetime model

PBA design: **D-f-Reliability**

- 2 & 3D models for assemblies with flexible component on flexible substrates calculating forces and moments on solder joints
- PCB and package flexibility taken into account

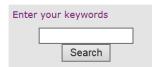

To replace IPC-D-279's:

The cyclic fatigue damage term for leadless SM solder attachments, for which the stresses in the solder joints exceed the solder yield strength and cause plastic yielding of the solder, is

$$\Delta D(leadless) = \left[\frac{FL_D \ \Delta(\alpha \Delta T)}{h}\right]$$

[Eq. A-3]

26

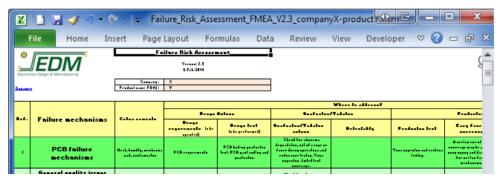

© imec

PBA design: D-f-Reliability

Guidelines Tools Calculators Projects Agenda Library Membership RoHS Service

TOOLS Failure Risk Assessment FMEA News

- · IPC Standards Guide
- PCB Laminate Overview
- NPI Questionnaire
- PBA Checklist
- BOM DfM Checklist
- Failure Risk Assessment FMEA
- IPC Class 2 vs IPC Class 3 - Assembly View


The PBA Failure Risk Assessment FMEA provides a comprehensive overview of potential Printed Board Assembly quality and reliability issues together with the major risk factors. Where and how to address these issues in the product development cycle is indicated. This tool can be used as a proactive FMEA tool in PBA development. FMEA: Failure Mode and Effects Analysis

Failure Risk Assessment (Members / Partners only)

Version 2.3

Revision date 6-feb-2013

More information on membership / partnership

cEDM is hiring

Check out our new job openings

<u>More</u>

New calculator

Through Hole Solder Fill Calculator

More

September 18, 2015

cEDM WORKSHOP # 23

<u>More</u>

New guideline

Signal Integrity

More

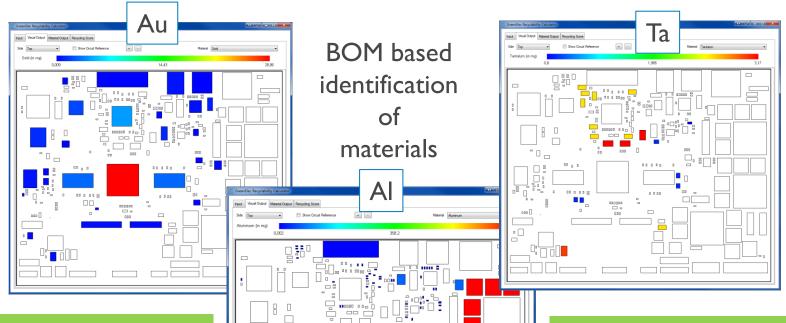
New calculator

Thermal Via Design Calculator

More

October 7-14-21-28, 2015

KULeuven Course EMC


More

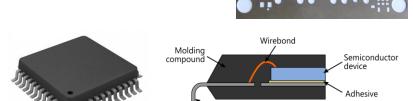
© imec

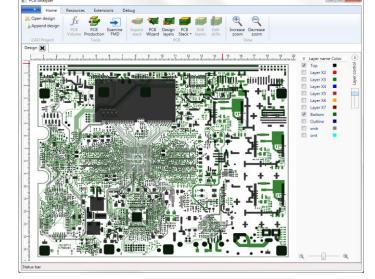
PBA design:

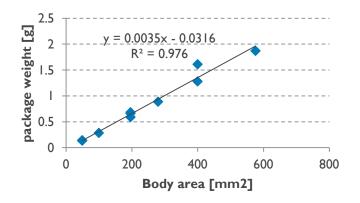
Green Design
D-f-Environment
D-f-Recycling

PBA certification:

Material declaration RoHS – Reach Conflict materials




Full Material Declaration Material Composition Models


Solder: pad & stencil data

Component

Lead frame

Estimate material content based on the physical characteristics and build-up

PCB

8 LAYER STACKUP		
	Basic material	
	PLATING	17 um
Cu_top	COPPER	18 um
***	PREPREG	2x63 um
Cu_lay2	COPPER	35 um
	INNER	300 um
Cu_lay3	COPPER	35 um
****	PREPREG	2x63 um
Cu lay4 -	COPPER	35 um
7/////	INNER	300 um
Cu_lay5	COPPER	35 um
	PREPREG	2x63 um
Cu lay6 -	COPPER	35 um
7/////	INNER	300 um
Cu_lay7	COPPER	35 um
	PREPREG	2x63 um
Cu bot	COPPER	18 um
_	PLATING	17 um
	TOTAL	1684 um

FUNDED PROJECTS

Cooporative

IWT O&O Rev-Up

- Reliability testing
- Physics-of-Failure based
- Interconnection
- Surface Insulation Resistance
- "health monitoring"

ICON Compact

- Physics-of-Failure based reliability modeling
- Interconnection
- Selected components
- Time-dependent failure in product development.

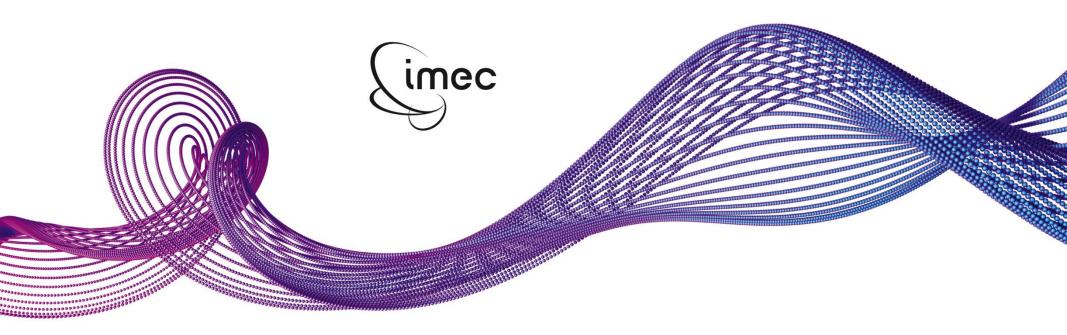
Collective

Start: 1/10/2015

VIS-traject InProVoL

- DfR Guidelines
- DfR Tools
- Industrial implementation
- Consultancy

You can join the consortium and get early access to the results!



THANK YOU

