the business of perfection

PBA-kwaliteit en falingsrisico's: cijfers graag

antenn on Professor

Apply to a production environment

Test- & Co-engineering Kris Meeus kmeeus@tbp.eu

Feed the method with effective production figures

Result of the analysis on production figures With practical examples and defined corrective actions

Next steps

Dirksland, Netherlands

- 100 Employees
- 6.000 m² production area
- 25 M€ Turn-over

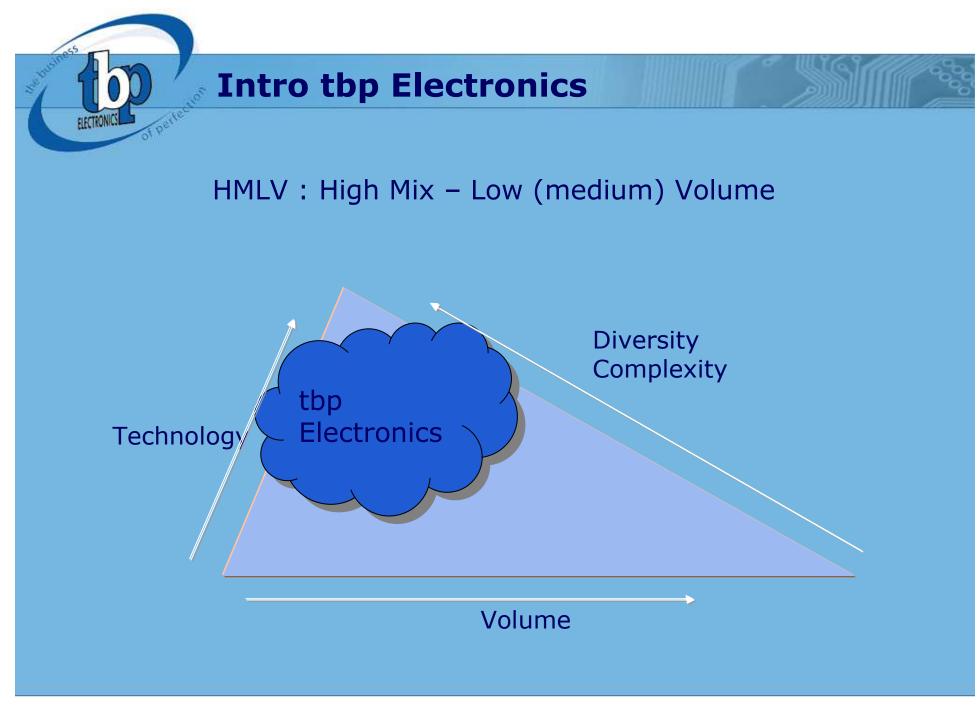
Geel, Belgium

- 330 Employees
- 30.000 m² Production area
- 75 M€ Turn-over

® tbp electronics

FIFCTRO

tbp Dirksland (NL)


headquarters

PCBA activities cabinet assembly full lifecycle low & medium volumes high tech tbp Geel (BE)

PCBA activities Cabinet assembly full lifecycle low up to high volumes high tech

- Over 30 years of experience
- 100 million euros in sales
- 400 + Employees
- Operations in the Netherlands and Belgium
- Strong customer focus

Feed the method with effective production figures

Result of the analysis on production figures With practical examples and defined corrective actions

Next steps

Make track of process flow and component position over the whole process

Make a distinction between shapes and components, also in the logged results

- Resistor 10k 1% -> 0603 chip
- MT47H512M4 (DDR2 SRAM) -> 63-Ball FBGA 11,5x9mm

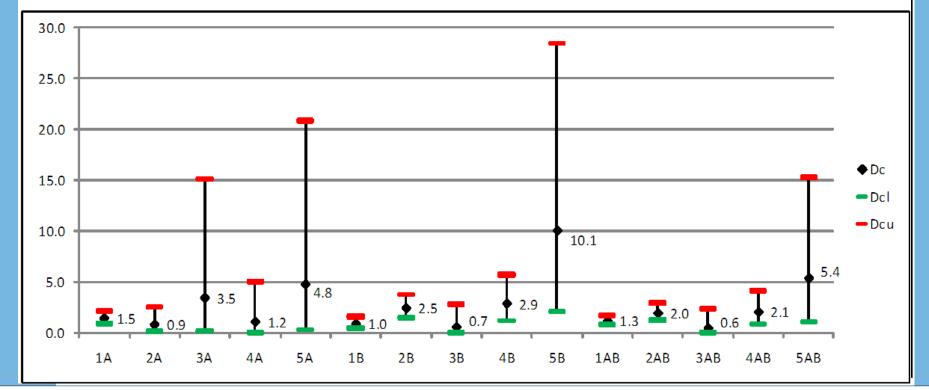
Declare fault types to every detected fault -> helps to define the root cause of the fault.

Feed the method with effective production figures

Result of the analysis on production figures With practical examples and defined corrective actions

Next steps

Analyzed products – reflow / reflow

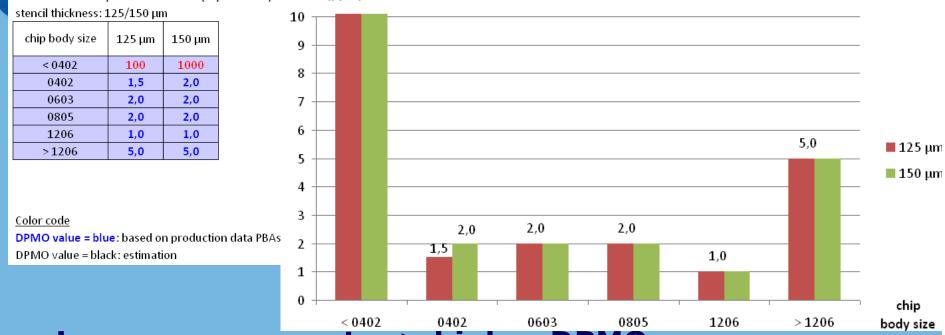

PBA	info			
group name (used	in DPMO graphs)	А	В	AB
total # coi	mponents	3400	5235	-
total number o	f DO per PBA	20143 (≈20K)	34633 (≈35K)	-
Assembly Intere	connection info			
Solder Alloy (Si	Solder Alloy (SnPb or Pb-free)		SnPb	SnPb
Primary Side	Solder Process	Reflow	Reflow	Reflow
(Тор)	Stencil Thickness	150 µm	Reflow 150 μm	150 µm
Secondary Side	Solder Process	Reflow	Reflow	Reflow
(Bottom)	Stencil Thickness	150 µm	125 µm	-
Batch info (used fo	Batch info (used for DPMO analysis)			
number of batches		34	30	64
mean batch size		264	231	249
total numb	er of PBAs	8984	6944	15928

Example: SMT 2leaded chip - open

OPEN – Top – Reflow : A=B=AB=150µm

body size	pkg-grp	#defects	#DO	Dc	Dcl	Dcu
0402	1A	17	11,715,136	1.5	1.0	2.2
0603	2A	1	1,850,704	0.9	0.2	2.6
0805	3A	0	197,648	3.5	0.3	15.2

OPEN – Top – Reflow : A=B=AB=150µm



-55

FIECTRO

Example: SMT 2leaded chip - open

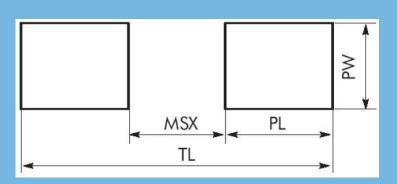
SMT 2-leaded chip - OPEN - Reflow (top+bottom) DPMO (ppm)

Larger components -> higher DPMO

- Pad design is typical not ideal
- Stencil should be thicker for this comp.
 -> not allowed by other components on this board.

•Smaller components -> same DPMO

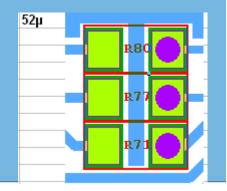
- Paste inspection
- Footprint optimization


Example: SMT 2leaded chip - open

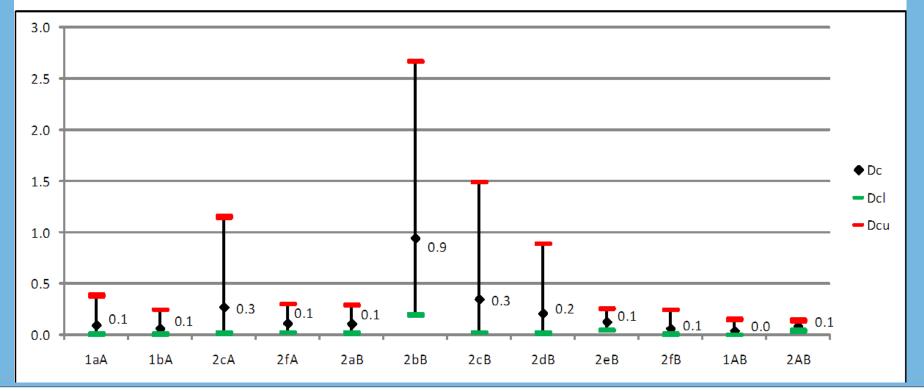
Improvements which explains these results •Paste inspection + optimization of stencil

- 3D past inspection -> optimization of stencil process
- Stencil adaptation

•Footprint optimization (ex 0402)


-> yield improvement of 40%

	PL	PW	MSX
R0402	0.47	0.558	0.51 Huidig design
	0.42	0.55	0.38 Nieuw voorstel

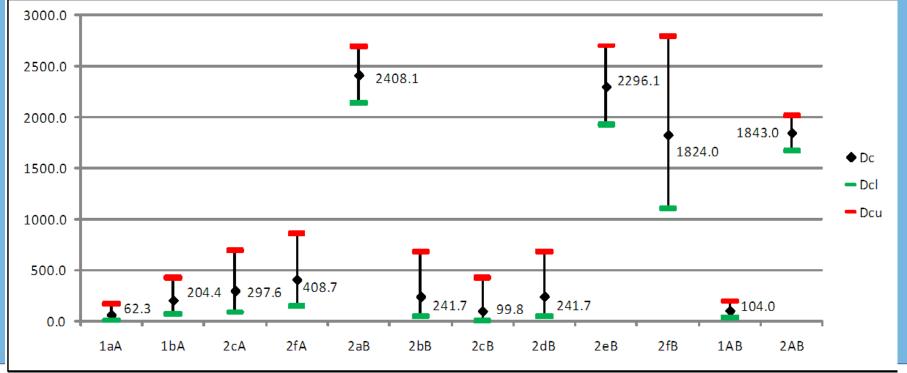


Example: BGA - open

OPEN – Top – Reflow : A=B=AB=150µm

lead pitch	package type	pkg-grp	#defects	#DO	Dc	Dcl	Dcu	
1.27 mm TC = 289 / Size = 23 x 23	1aA	0	7,789,128	0.1	0.0	0.4		
1.27 11111	TC = 676 / Size = 35 x 35	1bA	0	12,146,368 0.1 0.0	0.2			
1.00 mm	TC = 289 / Size = 19 x 19	2cA	0	2,596,376	0.3	0.0	1.2	
1.00 mm	TC = 1752 / Size = 42.5 x 42.5	2fA	1	15,739,968	0.1	0.0	0.3	

OPEN – Top – Reflow : A=B=AB=150μm



Example: BGA – fatal defect

FATAL DEFECT - Top - Reflow : A=B=AB=150µm

	_ II							
lead pitch	package type	pkg-grp	#defects	#DO	Dc	Dcl	Dcu	
1.27 mm TC = 289 / Size = 23 x 23		1aA	1	26,952	62.3	13.2	176.0	
1.27 11111	TC = 676 / Size = 35 x 35	1bA	3	17,968	204.4	76.0	431.4	
1.00	TC = 289 / Size = 19 x 19	2cA	2	8,984	297.6	91.0	700.5	
1.00 mm	TC = 1752 / Size = 42.5 x 42.5	2fA	3	8,984	408.7	15 2 .1	862.7	
	TC = 196 / Size = 15 x 15	2aB	200	83.328	2408.1	2139.5	2698.2	
FATAL DEFECT – Top – Reflow : A=B=AB=150um								

15x15mm 196p 1.00mm pitch

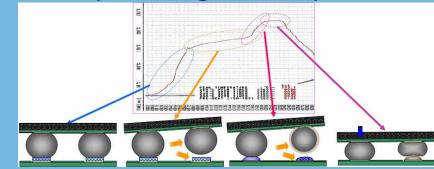
Analog device which is functional critical in the product

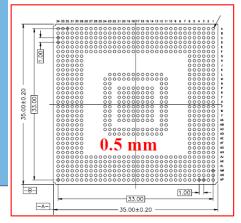
• improvement of test at manufacturer

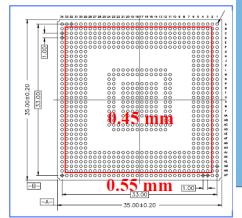
•Higher DPMO not because of production faults

31x31mm 721p 1.00mm pitch

•Analog device with very bad structural test access (ICT, JTAG, ...)


- DPMO at open/short is very low
- -> slip through to functional test
- -> bad diagnosis (open/shorts reported as fatal defects)
 - -> count back to open/short gives +1 DPMO


42,5x42,5mm 1752p 1.00mm pitch

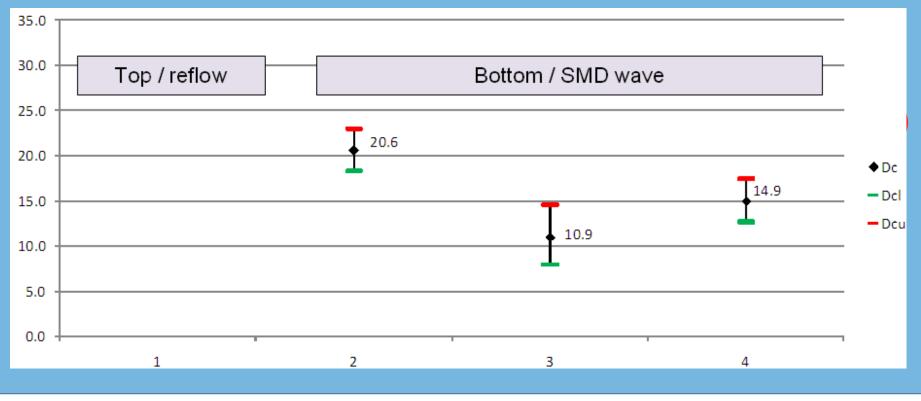

Defects mainly at corner of BGA (visual check) > Warpage / Pillowing -> BGA package structure

• Use of anti-pillowing solder paste

More paste on corners of BGA

pagina: 18

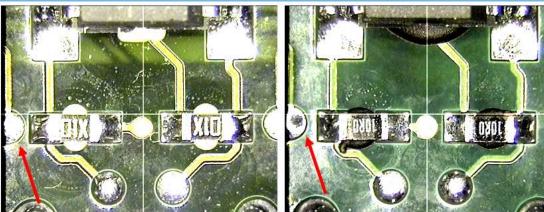
Analyzed product – reflow / wave


PBA			
group name (used	group name (used in DPMO graphs)		
total # cor	mponents	1061	
total number o	f DO per PBA	5202 (≈5K)	
Assembly Interc	connection info		
Solder Alloy (Sr	SnPb		
Primary Side	Solder Process	Reflow	
(Тор)	Stencil Thickness	150 µm	
Secondary Side	Solder Process	Wa∨e	
(Bottom)	Stencil Thickness	n.a.	
Batch info (used fo	or DPMO analysis)		
number o	54		
mean ba	tch size	262	
total numbe	er of PBAs	14158	

Example: SMT 2-leaded chip: open

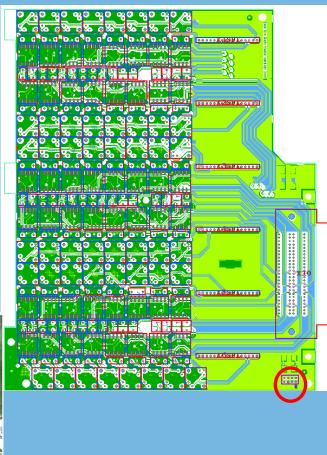
OPEN – Top/Bottom : C=150µm (top)

body size	pkg-grp	top/bottom	#defects	#DO	Dc	Dcl	Dcu
0402	1	top / reflow	8	28,316	306.1	165.8	509.7
0603	2	bottom / SMD wave	209	10,193,760	20.6	18.3	23.0
0805	3	bottom / SMD wave	29	2,718,336	10.9	7.9	14.5
1206	4	bottom / SMD wave	104	7,022,368	14.9	12.6	17.4



Example: SMT 2-leaded chip: open

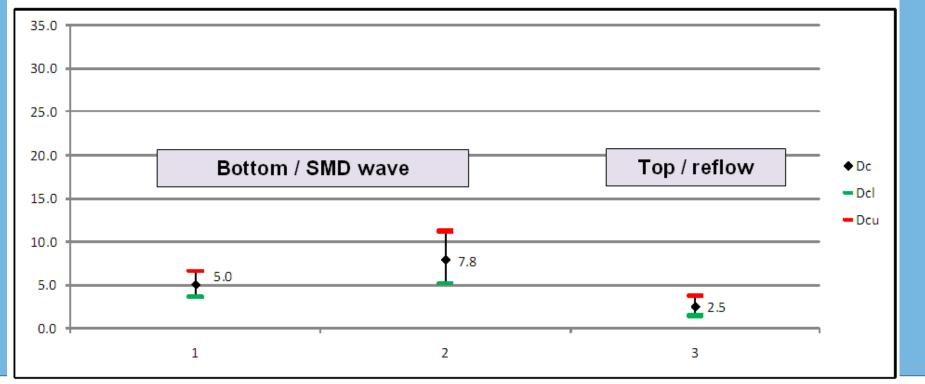
Only 1x 0402 comp at top with unlucky board position


Wave DPMO 10x > reflow

- Small comp > risk for glue at pads
- No in process correction due to glue
- Bigger components
 bad wave contact
- Pad pad / pad test point clearance

® tbp oud design: 200µm

new design: 400µm

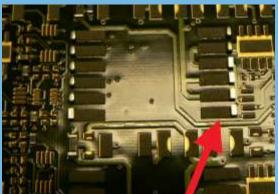


Example: Gull-wing & flat-lead: open

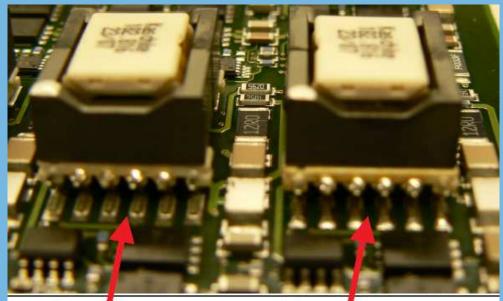
OPEN – Top/Bottom : C=150µm (top)

#leads	package style	pkg-grp	top/bottom	#defects	#DO	Dc	Dcl	Dcu
<=7	DSO-G	1	bottom / SMD wave	30	6,116,256	5.0	3.7	6.7
>7	DSO-G	2	bottom / SMD wave	18	2,378,544	7.8	5.2	11.2
~/	DIP-F	3	top / reflow	13	5,436,672	2.5	1.6	3.8

OPEN – Top/Bottom : C=150µm (top)






Example: Gull-wing & flat-lead: open

Good SMD result on transo's with bad copla leads

- By use of solder preforms

zonder preforms

Met preforms

® tbp electronics

Feed the method with effective production figures

Result of the analysis on production figures With practical examples and defined corrective actions

Next steps

Know the effective quality of these topics at product AND process

• Standardized method

Predict yield of products is very complex because of impact of

- Product design
- Component selection
- Process capability

Actual method requires

- A lot of data > high volume products
- Consumes time and effort

Move to a continuous improvement system

