Kwaliteit kwantificatie en Kwaliteitverhoging door test

Geert Willems

imec Center for Electronics Design & Manufacturing 30 mei 2013

Center for Electronics Design & Manufacturing

Imec's Center EDM team >70 years industry >35 years research experience in electronics

We bridge the gap between research and industry

ELECTRONICS

EAUTOMATION

Better electronics

at reduced cost through science based design & production methods

Inhoud

- Gekwantificeerde kwaliteit van PBA
- Kost van "minder kwaliteit"
- Impact van assemblage test
- Defect en test coverage modellen

Herkent u dit?

We zijn wel wat duurder maar onze **kwaliteit** is zoveel beter!

Kwaliteit is beter?

Minder uitval bij opstart!

ROBUUSTER!

CEE gecertificeerd

Metaal ipv plastic

Betere performantie

Laag energieverbruik!

Minder huilen en klutsen!

RoHS

Bintage design

En wat u nog meer onder de noemer kwaliteit kan plaatsen...

Elektronica

Top Quality!

50% lower assembly cost!

Quantified Quality:

- The **Quantified Quality** *Q* of a part/product is the probability of having **no defect**.
- A **defect** is any property that does not meet expectations.

Quality calculation

- Determine the Defect Opportunities DO
- Determine no-defect probability Q_i per DO
- A defect-free PBA mandates that none of the Defect Opportunities is defective.
- The probability Q of a defect-free PBA:

$$Q = \prod_{i=1}^{DO} Q_i$$

Properties:

• **Q=Yield** (first pass – after test)

- Zero Hour Defect Rate (ZHDR) = 1-Q
- Q decreases with:
 - Increasing number of DO (complexity)
 - Increasing assembly failure rate: $Q_i = 1 DPMO_i \cdot 10^{-6}$
- Q improves by introducing test and repair.

Added value of Quantified Quality concept:

- **Quality** becomes measurable and quantifiable. One can assign **an objective value** to it.
- **Test** perceived as an overhead cost transforms into an quality improving therefore **a value adding process**.
- Predictabillity of quality. Basis for **Design-for-Quality**.
- Basis for a common quantified quality language in the supply chain.

In real life there is no such thing as "Zero Defect Manufacturing"

Be realistic:

Deal with manufacturing failure risks

Kost van "mindere kwaliteit"

Top quality!

- Q=99.5%
- BOM=€450
- Assembly=€50
- Price=€550

50% lower assembly cost!

- Q=98%
- BOM= €425
- Assembly= €25
- Price= €525

Kost van "mindere kwaliteit"

Volume 10000/year

 Non-quality cost: €2500 per failure at customer

 Q=99.8%
 Cost: M€5 NQ-cost: 2500 x 0.5%x 10000=K€ 125

 Sales: M€5.5 Margin: K€ 375 or €37.5/PBA

Q=98 % Cost: M€4.5 NQ-cost: 2500 x 2% x 10000=**K€ 500** Sales: M€5.25 Margin: **M€ 2.5 or €25/PBA**

Kost van "mindere kwaliteit"

Volume 10000/year

Non-quality cost: €5000 per failure at customer

Q=99.8% Cost: M€5.0 NQ-cost: 5000 x 0.5%x 10000=**K€ 250** Sales: M€5.5 Margin: **K€ 250** or **€25/PBA**

Q=98 % Cost: M€4.5 NQ-cost: 5000 x 2% x 10000=**M€ 1** Sales: M€5.25 Margin: -**K€ 250** or -**€25/PBA**

ELECTRONICS EAUTOMATION WWW.EABEURS.NL

Assemblage test

Inspection methods

MVI

2D Xray

3D Xray

Electrical test methods

ELEC

Boundary scan

In-Circuit Test ICS **WWW.EABEURS.NL EAUTOMATION**

Assemblage test

Improving quality Q of PBA by detecting failing defect opportunities followed by repair.

- First pass quality $\{Q_i\}_{DO}$: First pass PBA Q_{FP}
- Test and repair of $\{Q_i\}_{\text{testable DO}}$: $\{Q_i=1\}_{\text{testable DO}}$

$$Q_{\text{tested}} = \prod_{i=1}^{DO} Q_i^{\text{tested}} > Q_{\text{first pass}} = \prod_{i=1}^{DO} Q_i^{\text{first pass}}$$

where $Q_i^{\text{tested}} = 1$ if test coverage TC(i) = 1 else $Q_i^{\text{tested}} \ge Q_i^{\text{first pass}}$

Kwaliteit na test

Test access TA_{DT} – Test efficiency TE_{DT} per DO Test coverage TC_{DT} : $TC_{DT} = TA_{DT} \times TE_{DT}$ Test slip TS_{DT} : $TS_{DT} = 1 - TC_{DT}$

DO quality after test:

$${}^{a}NQ_{DT} = TS_{DT}^{t} \times NQ_{DT}$$

$${}^{a}NQ_{DT} = \prod_{t=1}^{T}TS_{DT}^{t} \times NQ_{DT}$$

PBA quality after test: ${}^{a}Q_{PBA} = \prod_{DT=1}^{DO} {}^{a}Q_{DT}$

$${}^{a}Q_{PBA} = {}^{0}Q_{PBA} + QTC \cdot {}^{0}NQ_{PBA}$$

ELECTRONICS EAUTOMATION WWW.EABEURS.NL

Test strategie

- No test provides 100% test coverage
- Defect identification capability depends on test.
 From simple/low-cost to difficult/expensive: Structural test: AOI - MDA/ICT/flying probe - Boundary Scan Functional test
- Good practice: start with the test that provides the lowest cost trouble-shoot.
- An effective test strategy requires proper DPMO estimation, correct test coverage and PBA quality *Q* quantification.

Assemblage test

Impact of test

– Interpretation 1:

Reduction of failure probability 1-Q \rightarrow 0 (perfect repair)

Interpretation 2:
 Elimination of a Defect Opportuniteit

NOT (!):

Reduction with fraction *TC* of the number of defects in a group of defects D. (TC: test coverage)

Kwaliteit en test analyse

DO 20000

Top quality!

50% lower assembly cost!

- Q=98%
- DPMO=1/50000

WWW.EABEURS.NL

- AOI QTC=40%
- FT QTC=88%

• FT QTC=90%

ELECTRONICS

EAUTOMATION

- ICT QTC=50%
- AOI QTC=40%
- DPMO=1/100000
- Q=99.5%

Kwaliteit en test analyse

DO = 20000

DPMO=10ppm → Q_{FP} =81.9% ΔQ_{AOI} =7.2% ΔQ_{ICT} =5.5% ΔQ_{FT} =4.9% → Q=99.5%

Quality improvement by test

DPMO=20ppm $\rightarrow Q_{FP}=67\%$

 $\Delta Q_{AOI} = 16.5\%$ $\Delta Q_{FT} = 14.5\%$

 $\rightarrow Q=98\%$ + lots of repair&scrap!

Defect model & test

Multiple tests

AOI: optical inspection

- Missing components
- Orientation of components

iNEMI

- ICT: electrical
 - Shorts Opens
- Correctness component
 Functional test:
 - Shorts Opens
 - Correctness component
 - Defect component

TEST STRATEGY "Fill the gaps"

Defect model

Definition of defect categories: *wish list*

- Related to physical defects (≠electrical)
- "As simple as possible but not simplier"
- Linked to industry standards:
 - IPC-7912A -Defect Opportunities of a PBA Component, placement, termination, PBA, PCB
 - -Defects Per Million opportunities = DPMO
- IPC-7912 insufficient detail.

ELECTRONICS **WWW.EABEURS.NL EAUTOMA**

<u>_</u>

Defect Model

EDM definitions

- -As simple as possible
- FUNCTIONAL DEFECTS
- Acceptability defects
 IPC class 1-2-3
- Physical defects
- Independent of the failure cause
- Manufacturing not design defects

IPC Defect Category	PBA- item	Defect Opportunity DT	Definition
Component	DCB	PCB DEFECT	PCB manufacturing defect
		DELAMINATION	Delamination of PCB during heat treatment
(DT _{PCB} = 3)	FCD	VIA CRACKING	Via cracking during heat treatment
		class 1-2-3	IPC class 1-2-3 quality defect as defined by IPC-A-600 standard
		PHYSICAL OUT-OF-SPEC	A component is functional but some aspect of its physical properties does not adhere to specification
Component	BoM	ELECTRICAL OUT-OF-SPEC	A component is functional but some aspect of its electrical properties does not adhere to specification
(DT _c = 3)		FATAL DEFECT	A component is not functional due to electrical malfunction (including data programming error e.g. wrong PROM code)
		class 1-2-3	IPC class 1-2-3 quality defect as defined by IPC-A-610 standard
	BoM	MISSING	A component is missing.
Placement (DT _P = 4)		WRONGLY EQUIPPED	A wrong component was placed or a component was placed on a not-equipped location of the PBA design/layout
		MISORIENTED	Component placed with incorrect orientation w.r.t. pin 1
		MISPLACED	Component placed at incorrect position (e.g. with X-Y offset) or small orientation offset to the correct position resulting in electrical defect
		class 1-2-3	IPC class 1-2-3 quality defect as defined by IPC-A-610 standard
Termination		OPEN	The electrical contact between the component terminal and a pad is interrupted.
(DT _T = 2)	BoM	SHORT	Undesired electrical connection between a component terminal and other terminal(s) or other electrically conductive PBA features.
		class 1-2-3	IPC class 1-2-3 quality defect as defined by IPC-A-610 standard
	PBA	MECHANICAL	PBA mechanical defect (not component related)
Assembly		INTERCONNECTION	PBA interconnection defect (not component related)
(DT = 4)		CLEANING	PBA cleanliness issue
(UT _{PBA} - 4)		CONFORMAL COATING	Conformal coating does not adhere to its specification (pinholes, not coated/overcoated areas)
		class 1-2-3	IPC class 1-2-3 quality defect as defined by IPC-A-610 standard

Defect Model

Unambiguous definitions are essential:

- Defect types
- Test access Test efficiency Test coverage.

Goal:

*Objective, universally applicable and inprinciple correct*¹ *approach to failure probability and test coverage calculations.*

¹test impact at DO – no calculation approximations

Defect Model

BOM based model

SMT 2-leaded chip - OPEN - Reflow (top+bottom)

Determine **DO failure probability?**

PBA DPMO models

Project : VIS-PROSPERITA

V12 November 2012

500.000.000 **DO** study

Alain Carton Phone: +32 16 287782 Mobile: +32 476 611470 Alain.Carton@imec.be

Geert Willems Phone: +32 16 288962 Mobile: +32 498 919464 Geert.Willems@imec.be

> IMEC Kapeldreef 75 B3001 Heverlee

26 November 2012

Copyright @2012 imec. All rights reserved.

Only an authorized person is hereby permitted to view and use this document subject to the following conditions:

- This document may be used for informational purposes only. Any copy of this document or portion thereof must include the copyright notice.
- 2
- 3. This information is provided "AS IS" and without warranty of any kind, express, implied, statutory, or otherwise
- Imec shall not be liable for any actual, direct, indirect, incidental or consequential damages arising out of 4 the use, performance or application of this document.

Permission is not granted for resale or commercial distribution or use of the document, in whole or in part, or by itself or incorporated in another work.

Test coverage model

IPC Category	Defect Type	Test Access	Test Efficiency
Termination	Open	IF Terminal visible: TA = 1 ELSE: TA = 0	IF TH or leads Axial/Radial + 2 side inspection: TE = 0,5 ELSE: TE = 0
	Short	IF Terminal visible: TA = 1 ELSE: TA = 0	IF TH or Gullwing: TE = 1 ELSE: TE = 0
Placement (BOM)	Missing	TA = 1	TE = 1
	Wrongly equipped	TA = 1	Component has distinctive features such as label: TE = 0,95 ELSE: TE = 0,05
	Misoriented	TA = 1	Component has no orientation: TE = - Component has orientation mark: TE = 1 ELSE: TE = 0
	Misplaced	TA = 1	PCB provides position reference (e.g. silk screen): TE = 1 ELSE: TE = 0
Component (BOM)	Physical Out-of-spec	TA = 1	TE = 0,5
	Electrical Out-of-Spec	TA = 0	TE = -
	Fatal defect	TA = 0	TE = -
Component (PCB)	Design	TA = 0	TE = -
	PCB Defect	TA = 0	TE = -
	Delamination	TA = 0	TE = -
	Via cracking	TA = 0	TE = -
Assembly (PBA)	Mechanical	TA = 1	TE = 0
	Interconnection	TA = 1	TE = 0
	Cleaning	TA = 0	TE = -
	Conformal coating	TA = 1	TE = 0

AOI model Algorithm based

- POS ε {AT, CC, GA, FP, SO, CY, IP, FM} - POS ε {XD, LF} AND TC = 2 AND S ε {R, F, H, E} AND Max(L,W) ≥ 1,6 mm - POS ε {XD,LF} AND TC = 2 AND S ε {C,F,I,J,L,N,O,P,Q,R} - POS ε {AT,CC,GA,FP,SO,CY,IP,FM} OR (POS ε {XD,LF} AND TC=2 AND S NOT ε {C,F,I,J,L,N,O,P,Q,R}

- = SMD AND (POS ε {CC,GA} OR (POS ε {FP,SO,FM} AND TC ≥ 8 AND (TS ="N" OR TP ε {D,T})))

BOM based test Coverage models: MVI, AOI, ICT, BS, functional test

PBA kwaliteit tool PBA kwaliteit tool PBA kwaliteit tool Available now!

- Generic DfX supporting tool
- Can be used very early in design phase (concept)
- Quantified prediction of PBA DfX properties
- V1.0: Quality and test coverage prediction

Dank u voor uw aandacht

Geert.Willems@imec.be ++32-498-919464 www.edmp.be