

 5th electronic materials, processes and packaging

 for space workshop (EMPPS)

 20 - 22 may 2014, esa-estec, the netherlands

 European Space Agency

REDUCED 2ND LEVEL SOLDER JOINT LIFE TIME OF LOW-CTE MOLD COMPOUND PACKAGES

<u>Bart Vandevelde</u>, Riet Labie, Geert Willems **imec**, Center of Electronic Design and Manufacturing (cEDM), Leuven, Belgium

Lieven Degrendele, Maarten Cauwe, Johan De Baets imec, Centre for Microsystems Technology (CMST), Gent, Belgium

- Introduction of Low-CTE Mould compound for packages
- Experimental setup
- Experimental results:
 - PBGA228
 - QFN64
- Correlation with FEM simulations
- FEM based parameter study
- Impact of board stiffness and board fixation
- Other concerns related to low-CTE mould compound packages
- Conclusions

Outline

- Introduction of Low-CTE Mould compound for packages
- Experimental setup
- Experimental results:
 - PBGA228
 - QFN64
- Correlation with FEM simulations
- FEM based parameter study
- Impact of board stiffness and board fixation
- Other concerns related to low-CTE mould compound packages
- Conclusions

Introduction of low-CTE (green) mould compounds

Driven by:

- "Going Green" trend: Halogen-free plastics
- Need for reduced moisture sensitivity (lead-free)

• Cost

High filling (>85%) of silica particles, resulting in

- high stiffness (25 GPa 30 GPa)
- low CTE (7 9 ppm/°C).

The change-over took place between 2005-2010

(data from a leading semiconductor supplier)

Typical properties for green mold compounds

Low-CTE mold compounds are stiffer

- Introduction of Low-CTE Mould compound for packages
- Experimental setup
- Experimental results:
 - PBGA228
 - QFN64
- Correlation with FEM simulations
- FEM based parameter study
- Impact of board stiffness and board fixation
- Other concerns related to low-CTE mould compound packages
- Conclusions

Selected packages for TC study: **PBGA 228 I/O's – 0.5 mm pitch**

Figure 2 : BGA228 daisy chain component.

Selected packages for TC study: FN 64 I/O's – 0.5 mm pitch

Variations

Mould compounds:

- GMC: 8.5 ppm/°C
- Conv MC: II ppm/°C •

Solder ball	+	paste
SnPb		SnPb
• SAC305		SAC305
• SAC105		SAC305

- The IPC-9701 TC1 accelerated test condition for solder joint evaluation was selected as the most appropriate test.
 - 0 to 100°C thermal cycling (air-to-air)
 - Total cycling time = 1 hour
 - ramp up time = 10 minutes
 - dwell-time = 20 minutes
 - In-situ measurement for opens

- Introduction of Low-CTE Mould compound for packages
- Experimental setup
- Experimental results:
 - PBGA228
 - QFN64
- Correlation with FEM simulations
- FEM based parameter study
- Impact of board stiffness and board fixation
- Other concerns related to low-CTE mould compound packages
- Conclusions

0 to 100°C cycles to failure

Impact of mold CTE: Life time (11ppm BGA) ~ **2.2** * Life time (8.5ppm BGA) Impact of mold CTE is far greater than the chosen solder composition

© imec 2014 | www.cedm.be

Heavily damaged solder joint especially at the corner/edge area indicative for a large mismatch

5th electronic materials, processes and packaging for space workshop (EMPPS) 20 - 22 may 2014, esa-estec, the netherlands European Space Agence

Result 2: QFN64 9x9 mm (0.5 mm pitch)

2.4 mm PCB

0 to 100°C cycles to failure

QFN's with 7ppm/°C: (almost) **all failed** after 2000 cycles QFN's with 12 ppm/°C: **no failures** after 2000 cycles

QFN64: 7ppm/°C EMC – SAC305 solder – No wettable flank

 Sth electronic materials, processes and packaging

 for space workshop (EMPPS)

 20 - 22 may 2014, esa-ester, the netherlands

European Space Agence

QFN64: 7ppm/°C EMC – SAC305 solder – No wettable flank

QFN64: 7ppm/°C EMC – SAC305 solder – Wettable flank

 Sth electronic materials, processes and packaging

 for space workshop (EMPPS)

 20 - 22 may 2014, esa-ester, the netherlands

European Space Age

QFN64: 12 ppm/°C EMC – SAC305 solder – No wettable flank

5th electronic materials, processes ar for space workshop (EMPPS) 20 - 22 may 2014, esa-estec, the netherlands

Failure analysis

 Sth electronic materials, processes and packaging for space workshop (EMPPS)

 20 - 22 may 2014, esa-estec, the netherlands
 European Space Ager

- Introduction of Low-CTE Mould compound for packages
- Experimental setup
- Experimental results:
 - PBGA228
 - QFN64
- Correlation with FEM simulations
- FEM based parameter study
- Impact of board stiffness and board fixation
- Other concerns related to low-CTE mould compound packages
- Conclusions

Thermo-mechanical analysis of package assemblies using FEM

- ANAND creep model for simulation of creep deformation in the solder joint
- Creep strain per cycle can be translated into expected average life time to failure

Validation of critical joint/zone for BGA228

5th electronic materials, processes and packaging for space workshop (EMPPS) 20 - 22 may 2014, esa-estec, the netherlands European Space Agenc

Thermal cycling effect on solder joints

Validation of critical joint/zone for QFN64

- Introduction of Low-CTE Mould compound for packages
- Experimental setup
- Experimental results:
 - PBGA228
 - QFN64
- Correlation with FEM simulations
- FEM based parameter study
- Impact of board stiffness and board fixation
- Other concerns related to low-CTE mould compound packages
- Conclusions

Relation between life time and mould CTE (for QFN 64)

Life time **exponentially** drops with reduced CTE of the mould compound

- Introduction of Low-CTE Mould compound for packages
- Experimental setup
- Experimental results:
 - PBGA228
 - QFN64
- Correlation with FEM simulations
- FEM based parameter study
- Impact of board stiffness and board fixation
- Other concerns related to low-CTE mould compound packages
- Conclusions

QFN64 9x9mm: impact of board (non-)flexibility

When board is not allowed to bend anymore (= no z-displacement): QFN's with **12 ppm/°C**: life time drops from >10000 to 7000 cycles QFN's with **7ppm/°C**: life time drops from ~1500 to ~500 cycles

Former results showing the impact of board flexibility Solder1 Silicon PBGA 27x27 area array ADALIA DALIA DALIA DALIA DALIA 1.27mm pitch 6000 SAC 0.8 mm Solder 5000 (c) 4000 3000 0 to 100°C cycling 1.6 mm 2.4 mm 2000 Σ No PCB 1000 flexing 0 **GMC** 10 5 15 20 CTE (ppm/°C) 5th electronic materials, processes and packaging

for space workshop (EMPPS)

Cesa

© imec 2014 | www.cedm.be 29

- Introduction of Low-CTE Mould compound for packages
- Experimental setup
- Experimental results:
 - PBGA228
 - QFN64
- Correlation with FEM simulations
- FEM based parameter study
- Impact of board stiffness and board fixation
- Other concerns related to low-CTE mould compound packages
- Conclusions

Stiffer packages in combination with NiAu finish: more prone to IMC fractures under shock loads

5th electronic materials, processes and packaging

for space workshop (EMPPS)

Cesa

Low-CTE mould compounds in combination with Cu wire bonds: more risk for wire fatigue

Wire fatigue fracture after temperature cycling, induced by CTE mismatch between Cu wire and mould compound

resistance to fatigue fractures

JEDM

imec

6

8

10

Overmold CTE (ppm/°C)

12

2000

0

14

Outline

- Introduction of Low-CTE Mould compound for packages
- Experimental setup
- Experimental results:
 - PBGA228
 - QFN64
- Correlation with FEM simulations
- FEM based parameter study
- Impact of board stiffness and board fixation
- Other concerns related to low-CTE mould compound packages
- Conclusions

- Negative impact of low CTE "green" mould compounds on the solder joint second level reliability of QFN and BGA packages. Life time reduction up to 60% are measured
- The impact highly depends on the stiffness and support of the printed circuit board. The less the board can bend, the higher the impact of the low-CTE will be. Qualification of packages on rather flexible (<1.6 mm) boards can be a substantial overestimation of the life time for your real product
- For high reliability applications and electronics operating under severe conditions, this mould compound change creates a major reliability concern and requires thorough evaluation. The impact on electronics reliability is considerably greater than that of a change in solder alloy but as yet did not get a similar level of attention

Questions?

Bart.Vandevelde@imec.be +32 473 69 41 57 www.edmp.be

