mec

SMART PRODUCT DEVELOPMENT: THE SHIFT LEFT

23 MAY 2019

GERT WILLEMS – IMEC
CENTER FOR ELECTRONICS DESIGN & MANUFACTURING

Met steun van:

CONTENT

View on Product Development Challenges
View on Product Development Life-Cycle
Smart Product Development in Practice
"White Box" Technology Qualification
Summary

VIEW ON (SMART) PRODUCT DEVELOPMENT CHALLENGES

Research Analyst, Manufacturing and Product Innovation & Engineering

ABERDEEN

A STUDY ON DFX: PRODUCT COMPLEXITY

Table 1: Increasingly Complex Products Demand a Multi-Domain Product Development Solution

Product Element	% Increase — Past Two Years
Number of mechanical components	14%
Lines of software code	34%
Number of electrical components	21%

Source: Aberdeen, November 2018

A STUDY ON DFX: EXTERNAL CHALLENGES

Figure 1: External Business Pressures of Electronics Design

A STUDY ON DFX: INTERNAL CHALLENGES

Figure 2: Internal Challenges of Electronics Design

A STUDY ON DFX: FACING THE CHALLENGES

Figure 3: Best-in-Class Actions for Electronics Design

A STUDY ON DFX: THE SHIFT LEFT

Instead of waiting until a design is completed, the "Shift Left" methodology integrates manufacturing and performance validation in the design process.

Figure 4: Simulation-Driven Design Boosts Performance

Shift Left is a major advance in electronics design, allowing users to ultimately eliminate many of the iterations used for manufacturability and performance analysis today, thus making the overall flow more efficient.

INDUSTRY'S PRODUCT DEVELOPMENT STAGE-GATING

Often proprietary – consultancy companies – large companies

Fuzzy Front End (FFE)

INDUSTRY'S PRODUCT DEVELOPMENT STAGE-GATING

NTD, NPD, FFE, ideation, Problem Research, prototype, PoC, PRD, NPI, concept, design, architecture, EVT, prototype, DVT, prototype, PVT, ramp, industrialization, MP

• •

A lot of inconsistently used terminology: what does it really mean?

VALIDATION FOCUSED STAGE-GATING: THE 20TH CENTURY APPROACH

EVT - DVT - PVT - MP

- Test focused
- Iterative Design-Build-Test approach
- Intrinsically not pro-active
- Design-for-eXcellence addressed too late (DVT, PVT)

Not a viable approach for smart products!

REALISATION ORIENTED NPI STAGE-GATING

Architecture: system concept design

Design: physical product design

Prototype: product prototyping for test, qualification, certification and preparation of production (DfM)

Industrialisation: preparation of (volume) production, qualification, certification

Production: production by regular supply chain

Operation: product operation

THE TRADITIONAL DESIGN-BUILD-TEST APPROACH

- New devices, environments, way of use: no experience!
- Hardware iteration: Time consuming, cost

SMART PRODUCT DEVELOPMENT SHIFT LEFT IN PRACTICE

- NPE Problem research: user, market, business, technical/industrial feasibility

 Proof-of-Concept (PoC)
- NPP Plan the product development, operations and business set-up

 Product Requirements Document (PRD), operation's and business' roll-out plans
- NPI Execution of product development, industrialization, operations and business roll-out -> Qualified, documented product delivered to customer.

PRODUCT DEVELOPMENT LIFE-CYCLE: A BIT MORE DETAIL

SHIFT LEFT IN PRACTICE

WHAT DO WE NEED?

Product:

- Complex
- Co-development
- Dynamical
- High Quality
- High Reliability
- Low Cost
- Time-to-market

Trustworthy PREDICTION of all Product Life-Cycle aspects

without costly, time-consuming prototyping, testing and design iterations

How do we do that?

(focus on electronics HW DfX)

TRADITIONAL DESIGN-BUILD-TEST: BLACK BOX TESTING

Vibration Shock Heat Cold SBLACK BOX Moisture Thermal cycling CATE RJ45 Voltage/Power EM pulse/radiation "Alive"

SMART PRODUCT DEVELOPMENT TRADITIONAL DESIGN-BUILD-TEST: BLACK BOX TESTING

What did we learn by passing the test?

- The prototype passes the test.
- Does this guarantee anything regarding product operation?
 - New devices
 - New environment(s)
 - New application(s)
 - New ways of use
- What if any of the above changes?

What did we learn from a test failure?

Test relevancy: did we discard a perfectly good solution?

SMART PRODUCT DEVELOPMENT THE WHITE BOX APPROACH: STRUCTURAL DESIGN AND ITS VALIDATION

Electronics are physical structures consisting of a set of components electrically and mechanically connected to a substrate.

Understanding the product **structure** and how the **building blocks** and their **interconnections** perform and **respond to loads**, allows to predict how the **system** will perform and respond.

The **impact of changes** in building blocks, system buildup, environment, way of use, ... on performance, quality and reliability can be predicted.

THE WHITE BOX APPROACH: UNDERSTANDING THE BASICS

 $\frac{1}{C} = M$

Physics The next best thing to a crystal ball

The Mechanics of Electronics

OPEN THE BOX: SOLDER JOINT FAILURE PREDICTION

ECU mounted in cab

Truck manufacturer acknowledges our prediction of 2012.

Prevention is possible w/o high testing costs

A PBA ASSEMBLY "DIGITAL TWIN"

PBA Quality
Quantification
Prediction

- Generic D-f-Manufacturing supporting tool
- Can be used very early in design phase (concept)
- Quantified prediction of PBA DfM properties
- VI.0: Quality (yield) and test coverage prediction
- V2.0: Assembly capacity use and DfA analysis

SMART PRODUCT DEVELOPMENT QUALITY PREDICTION AND IMPROVEMENT

New Quality method achievements

- 4 to 6 times better PCBA quality in 3 years

- Manufacturing Risks have become transparent

EDM Workshop 20, December 9, 2014

After decades of constant PCBA quality we have been able to improve it at our suppliers by a factor 4 to 6 in 3 years time by deploying the new Quality Quantification methodology embedded in imec's **Pred-**X tool in **ASML**'s New Product Introduction process. Further quality improvement using this method at system level is the aim of ASML's ZHDR project. www.movip.nl — www.cedm.be

ASML

Dick Van Hees

"WHITE BOX" TECHNOLOGY QUALIFICATION

TECHNOLOGY QUALIFICATION

HIGH LEVELVIEW: WHERE IS TECHNOLOGY DEVELOPMENT?

SMART PRODUCT DEVELOPMENT TECHNOLOGY QUALIFICATION

Technology qualification

is the methodology applied to evaluate if a predefined sub-set of a technology fulfils all requirements to be considered fit-for-purpose for a specific set of applications, operational conditions and lifetime while fulfilling additional Design-for-eXcellence requirements related to cost, manufacturability, quality, robustness, reliability, repairability & maintenance, environmental impact, etc.

Technology Qualification is not product specific

The added value of the Technology Qualification Program is that it provides qualified building blocks for product (Electronic Assembly) development and integration leading to a Qualified-by-Design product for all aspects (DfX elements) that are not product functionality specific.

SUMMARY

SUMMARY

SMART PRODUCT DEVELOPMENT (NPI) STAGE-GATING

Collaboration: common stage-gating terminology

THANK YOU

embracing a better life

Geert.Willems@imec.be ++32-498-919464

www.cedm.be